
Accessibility of UI Frameworks and Libraries for
Programmers with Visual Impairments

Maulishree Pandey, Sharvari Bondre, Sile O’Modhrain, Steve Oney
School of Information
University of Michigan
Ann Arbor, MI USA

{maupande,sbondre,sileo,soney}@umich.edu

Abstract—The availability of numerous UI components, the
promise of accessibility, and cross-platform support have made UI
frameworks (e.g., Flutter, Xamarin, React Native) and libraries
(e.g., wxPython) quite popular among software developers. How-
ever, their widespread use also highlights the need to understand
the experiences of programmers with visual impairments with
them. We adopted a mixed-methods design comprising two stud-
ies to understand the accessibility and challenges of developing
interfaces with UI frameworks and libraries. In Study 1, we
analyzed 96 randomly-sampled archived threads of Program-
L, a mailing list primarily comprising programmers with visual
impairments. In Study 2, we interviewed 18 programmers with
visual impairments to confirm the findings from Study 1 and
gain a deeper understanding of their motivations and expe-
riences in using UI frameworks. Our participants considered
UI development essential to their programming responsibilities
and sought to acquire relevant skills and expertise. However,
accessibility barriers in programming tools and UI frameworks
complicated the processes of writing UI code, debugging, testing,
and collaborating with sighted colleagues. Our paper concludes
with recommendations grounded in empirical findings to improve
the accessibility of frameworks and libraries.

Index Terms—accessibility, programming, user-interface devel-
opment, programming tools, UI frameworks

I. INTRODUCTION

UI frameworks and libraries have become increasingly
popular for web and mobile development [1]. They help
developers by offering native and custom UI components that
enable the creation of complex interfaces [2]. Several frame-
works and libraries, such as Flutter [3], React Native [4], and
Cordova [5], also enable cross-platform development, allowing
product teams to reach a wider number of platforms and end-
users while developing in a single codebase. Many frameworks
also claim to be accessible out-of-the-box, suggesting that the
resulting UI would be accessible for people with disabilities.
Given their widespread use and the advantages they offer,
UI frameworks and libraries can have an outsized effect
on the accessibility of UI programming and the web. They
underscore the need to understand the accessibility of UI
development for programmers with visual impairments as they
use these UI frameworks and libraries. The consistent growth
of UI developer job roles [6]–[8] also highlights the need to
understand and improve the accessibility of the field to make
it more inclusive.

Prior research in Human-Computer Interaction (HCI) and
software engineering has studied the accessibility challenges

This work is supported by a gift from Google.

in UI development [9], [10]. However, their focus was mainly
on understanding the accessibility issues with IDEs and the
need for sighted assistance in development. This paper takes a
deep dive into the challenges in UI development and collabo-
ration due to use of UI frameworks and libraries. Specifically,
we ask the following research questions: (1) What are the
motivations for programmers with visual impairments to use
UI frameworks and libraries? (2) How do these frameworks
and libraries shape their programming experiences and collab-
oration with sighted developers?

We report findings from a two-part mixed-methods study.
First, we performed content analysis of 96 publicly archived
mailing list posts on UI development; we followed this with
18 semi-structured interviews with programmers with visual
impairments who have explored or used UI frameworks and
libraries as part of coursework and professional responsibili-
ties. Drawing on our analysis, we contribute the following:

• Evidence that accessibility challenges are difficult to iso-
late to programming tools or UI frameworks and libraries.
We need to consider the interplay between programming
tools, assistive technologies, operating systems, and UI
frameworks to improve accessibility (see §IV-B).

• An understanding of how accessibility challenges hin-
dered code writing, testing, and demonstrations for pro-
grammers with visual impairments. (see §IV-C)

• Design recommendations regarding documentation and
supporting help-seeking for programmers with visual
impairments. (see §V)

Our findings contribute to HCI, accessibility research, and
software engineering research. They are especially important
to people designing visual programming tools and languages.

II. RELATED WORK

A. Accessibility of Programming

Initial research with programmers with visual impairments
provided a high-level overview of their experiences, accessi-
bility challenges, and practices [10]–[12]. Subsequent studies
performed a deeper dive into these categories, which we
explain below.

IDEs and text editors rely heavily on visual aids such as
syntax highlighting and indentation to assist in source code
navigation, organization, and visual search [13]–[15]. IDEs

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

mailto:maupande,sbondre,sileo,soney}@umich.edu

also organize information visually into panels and windows,
which are difficult for programmers with visual impairments
to locate quickly relative to sighted programmers. These
challenges are amplified by IDE documentation that rely on
screenshots and do not list relevant keyboard shortcuts [16],
[17]. For programmers with visual impairments, a common
workaround is switching to plaintext editors [9], [10], [12] in
conjunction with command-line interfaces (CLIs) for installa-
tion, debugging, and version control [18]. However, the latter
present text in unstructured form without any markup, which
poses navigation challenges for screen reader users [18].

Researchers and practitioners have created audio-based tools
to address the challenges with navigation [14], [19]–[22],
code comprehension [19], editing [23], and debugging [14],
[24], [25]. Besides programming tools, empirical studies have
also investigated collaborative programming activities. In prior
work, we reported on how the practices associated with activ-
ities like pair-programming and code reviews have evolved to
support sighted programmers [9]. Thus, programmers with vi-
sual impairments often have to drive the collaboration session
when working with sighted teammates [9]. These accessibility
challenges are further complicated by the programmers’ social
environment such as project management practices [9], [26],
(un)availability of accommodations [17], and interpersonal
relations with sighted colleagues [9], [27].

B. Accessibility of UI Development

Several solutions at the intersection of accessibility and UI
development are targeted at sighted developers and designers
to support them in building accessible interfaces. We highlight
them for two reasons. First, their underlying interactions and
interfaces remain visual and, therefore, of limited use to
programmers with visual impairments. For example, Hansen
et al. created an interactive tool to recommend sufficient color
contrast in UI designs [28]. While developers and designers
with visual impairments would find utility in such a tool [9],
its reliance on visual elements limits its generalizability to
the group. Second, these studies provide valuable insights
into the limitations of UI frameworks as they are used by
sighted developers [29]. Sighted developers have found that
Xamarin [30] and React Native [4] do not expose all the
accessibility APIs, making it difficult to create fully accessible
mobile applications [31]. Similarly, the web frameworks, An-
gular, Vue, and React, do not notify sighted developers about
accessibility violations [32]. We confirm and build on these
findings by bringing in the perspective of programmers with
visual impairments.

Empirical studies offer insights into the challenges of cre-
ating webpages using HTML, CSS, and JavaScript [33]–[35].
Programmers with visual impairments have shared that they
feel less confident about CSS modifications [10], [36] and
seek sighted assistance to verify the layout and CSS edits [9],
[33], [35]. Furthermore, artifacts such as wireframes and
design specifications lack text descriptions or are inaccessible
with screen readers, requiring clarification about colors, pixel
values, etc., with sighted team members [9]. Prior work has

also revealed that people with visual impairments find it easier
to understand the spatial layout on touchscreens compared
to computers [37]. During development, they can use the
screen reader gestures to verify the size and position of UI
elements with relatively higher independence [9]. On the
other hand, most layout editors within IDEs interface poorly
with screen readers [9]. They do not offer pixel positions,
relative locations, and dimension information. To address these
challenges, Borka developed the Developer Toolkit, an NVDA
addon, that informs developers of location and dimensions of
UI elements [38]. Researchers have also developed multimodal
systems to convey spatial layout of webpages in non-visual
formats — using tactile print-outs to represent the HTML [33];
organizing tactile beads on a sensing board to create new
layouts [39]; using gestures to edit HTML/CSS on tablets
with VoiceOver feedback [40]. Potluri et al. have discussed the
potential of using AI to support color selection, iconography,
layout design, etc [41]; their representation in tactile forms
(e.g., color wheel diagrams, braille font charts, etc) have shown
promise in teaching web development [36].

The existing literature in HCI, accessibility research, and
software engineering has yet to examine the advantages and
challenges the UI frameworks and libraries present to pro-
grammers with visual impairments. We try to provide that
understanding through our research.

III. METHODS

We adopted a mixed-methods approach and conducted two
studies to understand the UI development experiences of
programmers with visual impairments.

A. Study 1: Analyzing Archived Posts on UI Development

We scraped the archived posts dated from January 2018
to December 2021 from the program-l mailing list (program-
l@freelists.org)—an active and free discussion group for
programmers with visual impairments to ask questions and
share resources. The archive for the mailing list is publicly
available [42] and dates back to November, 2004. Our choice
of the four-year time period was guided by the goal to capture
conversations before the start of the COVID-19 pandemic and
to target the most recent technologies.

The posts and replies are archived as separate web pages in
chronological order. We scraped a total of 11,915 web pages
(average 248.23 emails per month). We combined the original
posts and their replies into threads and saved them as text files
for analysis, resulting in 2,607 files.

The first author went through the subject lines to identify
threads most likely related to UI development. We identified a
total of 726 threads on the topic. Next, we randomly sampled
150 threads over three rounds (50 per round). The approach
allowed us to perform qualitative analysis in intervals and
reach thematic saturation [43]. When coding, if the content of
the thread seemed unrelated to GUI development, we removed
it from our analysis. In total, we analyzed 96 threads; the
breakdown after eliminating unrelated threads was 33, 31, 32
threads in round 1, round 2, and round 3 respectively. The

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE PARTICIPANTS.

ID Age Country
Programming

Education
Current Job Title

Programming
Experience

Programming Languages
and Frameworks

P1 23 USA Bachelor of Computer
Science

Software Developer 4 years Java, C#

P2 26 USA Bachelor of Computer
Science

Software Developer 3 years Java, PHP, Node.js

P3 30 US Bachelor of Computer
Science

Full Stack Developer 6 years Java, TypeScript

P4 39 UK Master’s in Machine
Learning

Computer Science Teacher 9-10 years Python, Java, Swift

P5 30 Switzerland PhD in Computer Sci-
ence

Software Engineer 10 years C++, Python, C

P6 22 USA Bachelor of Computer
Science

Incoming Software Engineer 7-8 years C#, C++, Python, JavaScript

P7 19 USA Self-Taught Accessibility Specialist 5 years Python (wxGlade)

P8 27 India Master’s in Computer
Applications

Accessibility SME & Tech Lead 7-10 years Java, C# (Xamarin), C, C++

P9 46 Sweden Self-Taught Software Engineer 30 years C# (WinForms), .NET

P10 23 India Bachelor of Computer
Engineering

Software Engineer 3 years Python (PyQT), C#

P11 27 Bahrain Bachelor of Computer
Science

Applying to Programming Jobs 6 years Python (wxPython), Java, Angu-
lar

P12 28 India Bachelor of Technology
in Electronics

Accessibility Consultant 6-7 years Java, React, Swift, Kotlin

P13 22 Pakistan Self-Taught Student 2 years C# (WinForms), HTML/CSS

P14 35 Hong Kong Self-Taught Research Assistant 10 years HTML, Python (PyQT, Flask)

P15 35 Iran Self-Taught Freelance Software Engineer 13-14 years JavaScript, Java, C# (Xamarin)

P16 26 Iran Self-Taught Junior Back-end Java Developer 3 years Java, HTML, CSS

P17 24 Egypt Self-Taught Student (Preparing for Master’s) 1-2 years Python (PySimpleGUI),
HTML/CSS

P18 25 India Self-Taught DevOps Engineer 3 years ReactJS, Python (wxPython),
Flutter

final list of threads was organized alphabetically and indexed
to quote from in the present paper. We describe our analysis
of the email threads in section III-C.

B. Study 2: Semi-Structured Interviews

Our thematic analysis gave us a breadth of understanding
about the accessibility challenges in UI development when
using frameworks and libraries. To gain a more in-depth
understanding of their use and impact on collaboration, we
decided to conduct interviews. The first author conducted
semi-structured interviews with 18 programmers with visual
impairments. Eligible participants had to be at least 18 years
old and either explored or possess experience in using UI
frameworks and libraries to build web or mobile applications.
We recruited participants through snowball sampling (n = 2),
posting on the program-l mailing list (n = 13), and posting on
the r/blind community on Reddit (n = 3).

Participants were 19 to 46 years old (median age 26.5;
average age 28.16). Only one participant (P17) identified

as female; the remaining participants identified as male. P2
and P5 identified as programmers with low-vision and used
screen magnifiers and zooming respectively. P3, P4, P9, and
P12 shared having retinitis pigmentosa; P14 shared having
macular degeneration. The onset of visual impairment differed
among these participants. The remaining participants reported
having little to no usable vision since birth. Besides P2 and
P5, each participant used a combination of screen readers.
JAWS [44] and NVDA [45] were the most popular screen
readers among our participants. P3, P4, and P9 reported
using VoiceOver [46] along with other screen readers. Table
I summarizes participants’ demographics and programming
experience.

Our interviews lasted between 40 and 75 minutes and were
conducted remotely over participants’ preferred video con-
ferencing platform. Participants verbally consented to audio
recording the interviews. We asked participants about the
frameworks they have explored or currently use, challenges
they encounter during programming, their experience with

documentation and tutorials, and their motivations for learning
UI development. The interviews concluded with a short ques-
tionnaire about participants’ demographics and programming
background (Table I). We compensated each participant with
a $30 USD gift card or its equivalent in local currency. Each
participant interview was transcribed in English for analysis,
described in the next section.

C. Analysis

Two members of the research team analyzed the first round
of email threads using open-coding to identify initial themes,
followed by inductive coding [47] for all of the threads. We
developed a total of 41 codes, which were clustered into
7 higher level themes. The members also wrote analytical
memos [47] during the coding process to analyze emerging
themes and identify gaps in the data. We performed weekly
reviews as a research team to discuss the findings and prepare
questions that would be relevant to follow-up on in interviews.

We were unable to transcribe the first two interviews due
to the poor quality of the audio recordings. We relied on our
notes for those interviews. The remaining interview transcripts
were first open-coded by two team members, followed by
organizing the data into codes from Study 1 and creation of
1 additional high-level theme. After coding the transcripts,
we did a final reorganization of the codes, resulting in six
high-level themes, which included codes on challenges in UI
development, lack of documentation, considerations behind
choosing UI frameworks, etc.

IV. FINDINGS

We present the key results from our analysis, focusing on
how the (in)accessibility of UI frameworks and libraries shapes
the programming processes and experiences of developers
with visual impairments. Quotes are slightly edited for clarity.
Quotes from archived mailing list threads (study 1) contain
thread IDs (T#) and quotes from interviews (study 2) include
participant IDs (P#).

A. Motivations for Using UI Frameworks and Libraries

We found that programmers with visual impairments were
motivated by different reasons to pursue UI development. Em-
ployment opportunities were a common reason among inter-
view participants (n = 9) to learn UI development. Participants
shared that being familiar with UI development improved their
chances of being hired, even though their preferred job roles
were back-end development. Other participants were intrinsi-
cally motivated; they (n = 3) shared that they had always been
interested in UI development. P7 shared that he had always
considered himself “as more of a designer”. Furthermore,
learning UI development established conversational fluency
with front-end developers and designers:

P16: “Sometimes I should check something with the
front end guys. And it’s crucial for me to know how
web development works in a big picture. [...] how
HTTP works, what are HTTP methods - GET, POST,
how RESTful API works and so on.”

Many interview participants (n = 5) explicitly stated that
they preferred using UI frameworks and libraries rather than
writing code from scratch. UI frameworks offered a relatively
independent way of creating the front-end. For example, when
a member inquired about the possibility of developing “good-
looking web interfaces as a blind person”, members on
the mailing list strongly recommended frameworks such as
DOJO [48] and Bootstrap [49]:

T15: “It [Bootstrap] is highly idiomatic and eas-
ily calculatable with ratio of columns and rows.
Its built-in components are already good-looking
enough, and you can easily customise with skins or
simple CSS touches. Its developers also consider and
even dictate best practices for accessibility.”

Frameworks and libraries also provided helpful visual scaf-
folding for developers and the designers they worked with. De-
signers had to develop visuals using the existing components
instead of requesting developers to create custom components.
As P3 explained, he could directly “use the SDK” in his code:

P3: the mockups were based on the components that
already exists [...] whoever builds like the visual
design part has to align with the standards of the
SDK. It’s not like they are inventing a UI.

Frameworks and libraries also helped differentiate be-
tween UI design and development responsibilities. Participants
shared that they did not have to “worry about colors, contrast,
stuff like that” (P3). The visual details were either considered
by the framework designers or were specified by the in-house
design team. Thus, programmers with visual impairments
could focus on the functionality of the UI:

T15: my boss brought our company’s graphic de-
signer into my department to help. He has taken
my super-simple UI and turned it into something
my company could show off. So there definitely is a
certain art to it and vision is not the issue.

Developers also spoke of their unique expertise in making
UIs accessible for end-users with visual impairments. They
sought assistance to make the UI components usable for
sighted end-users and coached sighted developers on how to
make the components accessible for screen reader users :

T3: as screen reader users, we are the experts [...]
You always want someone with a pair of eye-balls
to check out the colors. You also want someone that
has a decoration talent to help identify where each
color combination should go on the site

Thus, many interview participants considered the job roles
to be interdependent. According to them, each team member,
with their skills and competence with assistive technologies,
improved the accessibility and user experience of the interface.

When choosing which framework to learn, we noted a
strong preference for frameworks that were popular. For in-
stance, P8 shared that he was “currently working in winUI
because it is the hottest technology”. Similarly, when advising
a developer about selecting a framework among Angular,

Vue, and React, the mailing list members recommended the
lattermost since it “still has the lead in terms of jobs” (T82).

In summary, the use of frameworks and libraries afforded
higher levels of independence, delineated between design and
development responsibilities, enabled creation of good looking
UIs, and improved employment opportunities for programmers
with visual impairments. However, as we explain next, the lim-
ited accessibility of front-end frameworks and programming
tools could hinder developers’ collaboration and performance
in the workplace.

B. Accessibility Challenges

Accessibility barriers played a decisive role in our par-
ticipants’ programming experiences. We first discuss their
experiences with software critical to UI development, such
as IDEs, emulators, and browser developer tools, followed by
the challenges with UI frameworks and libraries.

1) Inaccessible Programming Tools: Consistent with prior
work, we confirmed that GUI builders in most IDEs were
not accessible with screen readers [9]. Sighted developers can
use them to drag and drop the UI components and create the
layout quickly. Since mouse interactions are not accessible to
people with visual impairments, they often had to “hand write
everything for the UI” which took “a lot of time” (P15). In
section IV-C1, we describe how the different approaches to
UI design affected collaboration between programmers with
visual impairments and their sighted colleagues.

We recorded instances of mailing list members searching for
accessible GUI builders (n = 3) so that they do not have to type
the entire UI code. For instance, one thread enquired about
accessible interface builders for C++. While the discussion
led to the discovery of an accessible extension, it only offered
a limited set of widgets:

T38: The name of this extension is Nitisa. This is
a Visual Studio extension and can be designed for
C. But it doesn’t use Visual studio as a Toolbox.
I would love to have a GUI designer that can use
Visual studio Toolbox.

Developers logged issues on GitHub and directly reached out
to development teams to improve the accessibility of GUI
builders and IDEs. Some product teams acknowledged acces-
sibility issues and proposed fixes, which developers viewed
positively. However, the improvements could also be slow to
come through, with the updates sometimes removed from the
mainstream tool:

T73: you would want to have Git installed, so
you can point to the accessibility branch and run
WXGlade once you have switched to that branch.

The quote above is from a thread where it was pointed out that
to use wxGlade, the GUI builder for wxPython, one needed
to check out the accessibility branch instead of working off of
the main branch. In a similar vein, participants shared that the
updates to the IDEs could negatively affect the accessibility
features and they had to either revert to an older version or
await future releases.

Emulators provided by major IDEs like Android Studio
were often inaccessible with screen readers. Developers had to
run the application on their personal devices, which was time-
consuming in the initial stages of the project. For freelancers,
the lack of accessible emulators limited the number of devices
they could test their application on. They had to either ask
friends and family for their devices or hope that the UI they
had developed would be displayed correctly on devices with
varying screen resolutions and dimensions:

P15: I have to test it on different people’s phone if
they allow me to get the result. So it takes a lot of
time. It really takes a lot of time!

The problem was amplified for macOS and iOS. Apple’s
policy requires testing the app with their device. However,
the exclusive availability of JAWS and NVDA on Windows
and the poor accessibility of IDEs with VoiceOver, Apple’s
screen reader, made Windows the preferred programming
environment for the developers in our studies. Without an
accessible emulator and availability of a device, they could
not develop UIs for Apple devices:

T92: you need a mac in order to test your app on
an ios device. This is quite frustrating [...] I could
install a mac virtual machine, however then I have
to deal with learning to use the OS and navigating
my way around xcode. Has anyone found a way to
develop apps for iOS that is accessible? Or is there
an accessible iOS emulator that is good?

The participants from Iran (P15 and P16) shared that they had
to contend with an extra layer of inaccessibility. IDEs offered
by Google and Apple, including the devices by the latter,
were not usable in Iran because of the government sanctions
imposed on the country.

Besides IDEs and GUI builders, accessibility issues with
browser developer tools were mentioned most frequently in
the email threads (n = 6). Poor accessibility would hinder
developers from navigating and searching the DOM. To work
around this, they had to either try different browser and screen
reader combinations or get sighted assistance:

T79: I couldn’t track down/find [graphical elements]
in the original examples initially, but my sighted
brother managed to find them sort of hidden in the
DOM for me

The different combinations of programming tools, browsers,
and screen readers led to a long tail of individualized acces-
sibility issues. The differences in programming environments
made it difficult to provide instrumental help to address the
accessibility problems. For example, one email thread shared
tips and tricks to save Google Chrome’s console logs due to
poor accessibility of its Developer Tools. However, differences
in keyboard layouts and browser versions made it difficult for
members to apply the solutions effectively:

T23: “I have the option to save the logs on google
chrome. I think you are not running latest beta
version of google chrome. Perhaps you try updating
google chrome on your windows machine”

2) Inaccessible UI Components: To be able to use a frame-
work efficiently, the UI components must be accessible. To
assess a framework’s accessibility, participants shared that they
often browsed the official documentation to find a mention of
accessibility. This served as a hint for whether the development
team had given any thought to accessibility. However, positive
search results did not necessarily guarantee accessible UI
components:

P12: The page of that component library claimed
itself to be ‘out of the box accessible’ and they
[participant’s team] blindly imported everything the
modals, the accordions, the buttons, each and ev-
erything [...] And we found very disappointing re-
sults [...] the buttons looked like buttons but were
announced like menus to the screen reader

We noted a general consensus that no framework or li-
brary was completely accessible. Thus, the decision to use a
framework or a library was based on competing factors such
as availability of documentation, cross-platform support, and
effort needed to improve the accessibility:

T72: Try XOJO. It is a Windows based cross-
plattform development tool using Basic language to
develop apps for both Windows and iOS/Mac. It is
not fully accessible but I can live with them.

The mailing list members shared components they had made
accessible and compliant through trial and error so that others
could refer to them. In Section IV-C2, we describe the impact
of inaccessible components on programming processes such
as debugging and testing.

3) Inaccessible Layout Managers: Layout managers—
tools that automatically group and arrange UI components ac-
cording to developer-specified constraints—considerably im-
proved the UI development experience. Our participants shared
that they often relied on these when tasked with creating the
UI and preferred libraries such as PyQT and wxPython that
offered a relative way of organizing the UI controls:

P10: If you don’t do a layout manager, you need to
explicitly say everything. [...] You need to pass the
coordinates [...] But, again, that doesn’t make any
sense to me because I don’t know which coordinate
to give because I am not seeing it.

Layout managers also enabled the participants to edit UIs more
easily since the dimensions were updated automatically when
changes were introduced. As a result, participants felt more
confident and competent working with these frameworks:

P7: [With wxGlade] I can have a reasonable degree
of confidence that those controls are where I say they
are

However, not all frameworks and libraries offer layout
managers. For instance, P7 shared that he has not “found a
similar thing” that allows him to develop front-end for web
applications with the “same convenience” as wxGlade does
for desktop applications. Furthermore, layout managers can
also be offered through IDEs or third party tools, which may
not be accessible.

C. Impact on Programming Processes and Performance

The accessibility challenges mentioned above affected the
workflows, collaboration, and performance of programmers
with visual impairments, which we describe below.

1) Writing UI Code: As mentioned earlier, programmers
with visual impairments either try to find accessible GUI
builders—which are rare—or manually code the UI. Devel-
opers expressed concerns about the number of lines required
to create UI components when typing the code in comparison
to using GUI builders:

T6: If you design items [...] using the XML editor
in Android Studio, as the graphical way of [...] is
still inaccessible, you define every component in 4
lines if we don’t count the wrappers. With Swing,
you have a few lines more: you have to create a
container too and add both to the frame which you
created previously.

Inaccessible GUI builders could also complicate collabora-
tion with sighted colleagues. It prevented them from creating
“clean looking resource file” (T30) that their sighted col-
leagues could review quickly. They also felt that the additional
lines of code made readability and navigation difficult with
screen readers, especially when editing the UI. They had to
redo the calculations if dimensions or positions were changed.
In contrast, the resource file containing the UI code was auto-
matically adjusted for sighted developers as they manipulated
the measures with the GUI builder. Similarly, identifying and
updating the location of visual parameters was difficult given
the nested nature of the source code:

T2: I just found myself overwhelmed by the number
of options and layouts with very little idea how to
make sure they do what I want. I lose track once
I am about two levels deep into the user interface
element structure.

Some GUI builders also produce incomprehensible code.
One GUI builder, for example, produced generic variable
names for UI controls. It was difficult for the developers to
map these names to UI controls’ position and functionality:

T56: Putting 2 buttons on a WPF designer surface,
then tabbing around, forces the screen reader to say
‘grid’, ‘button’, ‘button’, ‘window’. What button is
what one?

P9 shared that he had instructed his team to provide
meaningful names to the UI controls to make collaboration
on UI code easier. After laying out the controls, his sighted
colleagues would edit the variable names in the resource file.
Participants also shared that sighted developers did not realize
that if they dropped the elements in random order, it did
not change the UI visually but disorganized the accessibility
tree. Accessibility trees are based on the DOM tree and
expose a semantic version of the UI to screen readers via
platform-specific APIs [50]. If the UI elements are not in
the correct order or misrepresented, then it affects screen
reader navigation and interaction. For programmers with visual
impairments, this hindered their ability to debug and test. P9

mentioned that he had told his sighted colleagues to be mindful
of the “tab order” when using the GUI builder:

P9: if we have the correct tab order, you start in the
upper left corner and you go through the controls
and the labels and grids. But if the tab order is
out of order, you can jump between [imitates screen
reader]. That makes it very hard to manage.

2) Debugging and Testing: A major consequence of poor
accessibility was the difficulty in debugging and testing one’s
output. Furthermore, the broken accessibility of certain com-
ponents prevented developers from reproducing the bugs of
their sighted colleagues. For P16, it hindered his collaboration
with front-end developers:

P16: When I want to reproduce a bug [...] some
parts of this web UI is not very accessible [...] For
example, when I press enter in a web element, it does
not work [...] I found out that if I press insert +
space to go from a browse mode to focus mode in
my screen reader [...] it will work.

As mentioned earlier, even the software and frameworks that
enjoyed the consensus of being largely accessible, presented
some issues. The scarcity of documentation on accessibility of
UI components meant that programmers with visual impair-
ments often had to just “dive in and try” (T8) to assess the
severity of issues across frameworks and libraries:

P14: I produced a Qt 5 interface that I cannot
interact with [...] after a long, long time of research,
I learned about some basic things that can adjust the
code to make it accessible to the screen reader.

Given the general unavailability of documentation on the
accessibility of UI components, mailing list members reached
out to one another for documentation and resources and
gathered reviews on a framework’s accessibility. They would
mention the framework they were using and the specifics
of their programming environment. Others on the list would
share their experiences with the framework in their specific
environments and even offer to test the source code or the
specific UI components at their end:

T28: wx uses native controls, so I don’t see why
they shouldn’t work on the mac or Linux. When I
get home I’ll run one of my in progress wx apps on
my iMac and I can give you definitive information.

Sharing debugging and accessibility experiences allowed
the developers to work around the lack of documentation
and identify the platform and screen reader combinations on
which their UIs would work. However, this kind of sharing
and support was not possible for programmers working on
proprietary and private codebases.

The time and effort needed to test and fix the accessibility of
UI components could range from adding ARIA attributes [51]
to the markup to using scripting tools like Web Accessibi-
lizer [52] for fixing issues at scale to even writing code that
uses separate UI components for different platforms to offer
a consistent user experience with screen readers:

P6: what I ultimately had to do was add logic into
the program that if you’re running it on windows,
it uses one version of the tree control and if you’re
running it on anything else, it uses a different version

3) Social and Personal Implications: As prior work has
found, programmers with visual impairments were often
tasked with educating their colleagues about accessibility
issues and advocating for accessible solutions [9]. Participants
were often also tasked with explaining accessibility issues to
their sighted colleagues. For example, P6 had to demonstrate
the trade-offs of a cross-platform framework across Linux,
Mac, and Windows and explain how UI components behaved
differently with various screen readers:

P6: I would show him here’s how it sounds on
windows, here’s how it sounds on Mac, here’s how
it sounds on Linux. Here’s the information that one
of the tree controls is giving you in one environment
versus the other, and this is why this is a problem

Participants also described having to advocate for accessible
solutions within their team. Often the decision to use a
particular framework or programming tool was taken by the
team collectively. If they chose things with poor accessibility,
it could severely impact the productivity of programmers with
visual impairments. For instance, P8 had to convince his team
to use Xamarin and Visual Studio for the Android application
they were building; the poor accessibility of Android Studio
would keep him from giving his “full efforts”:

P8: I explained to them that if we develop using
Xamarin, we will be able to do it in less time.

The decision to switch to Xamarin came with trade-offs for
P8. He said Xamarin did not provide access to all the Android
APIs. He had to rewrite code to wrap some of the libraries
on his own. We recorded concerns about the poor support for
native libraries, including accessibility APIs, on the mailing
list threads (n = 5) as well.

Inaccessible UIs also prevented our participants (n = 2) from
using the UI and experiencing the user workflows indepen-
dently. For instance, P10 had joined as a back-end developer
on an existing project. He could not “go back and make the”
UI accessible in one go. Unable to use the application fully, he
could not build sufficient context about the project. He shared
that he had to attend multiple meetings with the design team
and his manager to understand the UI design and functionality
expected from controls he could not access.

Both P10 and P16 shared that they had pushed for making
their UIs accessible, not only to make themselves more pro-
ductive but also for other screen reader users. However, it was
difficult to implement accessibility in legacy UIs, an issue also
raised in several email threads (n = 5). Furthermore, workplace
dynamics complicated the implementation of accessibility. P10
mentioned that the changes had to be approved by senior
management, who may consider the trade-offs between his
productivity as a developer and the time it would take to
improve the accessibility. P16 shared that his position as the
only blind person in the organization and as a new member of

the team foregrounded his request. Insisting upon accessibility
could suggest to the team that he was not able to do his job
as well as other developers.

Participants (n = 3) shared that poor accessibility of the
UI presented challenges during demonstrations. In meetings
involving stakeholders and clients, it could also suggest poor
quality of work by the team:

P16: The problem is that when you want to give a
demo to a client and there is accessibility issues, it
slows you down [...] and they might think that you
are not capable enough to do these things

P16 further added that in remote client meetings during the
COVID-19 pandemic, poor demonstrations could disclose his
disability and reinforce ableist perceptions about his ability
and competence as a programmer. Therefore, when presenting
the UI to an external audience, participants generally had a
sighted team member “click on buttons for fill these forms
for me” (P16) while they handled the technical narration.
The approach allowed them to present and highlight their
contributions. P3 also shared that he occasionally recorded
his screen while operating the UI to capture the workflow and
do “non-live demo” and independent presentation (P3).

These instances highlight that accessibility issues in UI
development could affect responsibilities beyond software
engineering tasks, which developers are expected to perform
in professional settings.

V. DISCUSSION

A. Accessibility of the Programming Environment
The long-standing focus of HCI and software engineering

research has been on improving the accessibility of pro-
gramming tools [14]–[16] and programming activities such
as debugging [14], [24], navigation [19], [20], and UI de-
velopment [36], [40]. While these efforts are needed, our
findings show that accessibility issues cannot be isolated to
any particular programming tool or activity. They result from
the interactions between the various software that make the
programming environment — IDEs, browser developer tools,
UI frameworks and libraries, operating systems, and screen
readers. The combinations of these result in myriad configura-
tions, which leads to a long-tail of individualized accessibility
issues. The situation is exacerbated by the lack of (official)
documentation and online resources that discuss accessibility.
In the case of UI development, they complicate the processes
of code writing, debugging, and ensuring accessibility with
screen readers. They also impact collaboration between pro-
grammers with visual impairments and their sighted colleagues
since they use different approaches to UI development.

While sighted developers can turn to large forums like
Stack Overflow, the recourse for programmers with visual
impairments is to reach out to one another and report the
accessibility problems to the developer teams. However, we
show that the differences in programming environments also
make it difficult for programmers with visual impairments
to give and receive instrumental help. We recommend re-
searchers and designers consider the accessibility of the entire

programming environment instead of considering accessibility
improvements to any particular software. We also highlight the
need to design platforms that can support information-seeking
and help-seeking for programmers with visual impairments
for accessibility challenges. We can draw on the archives of
various online communities such as the program-l mailing
list to create a wiki that documents preferred programming
tools, UI frameworks and libraries, accessibility breakdowns
to watch for, and their workarounds.

B. Meeting the Promises of UI Frameworks and Libraries

Our findings show that UI frameworks have the potential to
allow for relatively independent UI creation with reduced need
for sighted assistance. Familiarity with popular UI frameworks
and libraries also made programmers with visual impairments
eligible for growing employment opportunities in the field.
However, the choice of the framework was moderated by
the availability of accessible UI components and accessible
programming tools, native look and feel, and cross-platform
support. Our analysis revealed that many frameworks listed
themselves as out-of-the-box accessible and cross-platform.
However, programmers with visual impairments often found
that both promises were only partially met. The behavior of the
components depended on the interaction between the program-
ming environment and screen readers, thereby interrupting
the process of debugging, testing, and demonstrations for
programmers with visual impairments. Since the visuals and
the performance of the UI components remained consistent
for sighted developers, they seldom realized the impact of
using these frameworks and libraries on their colleagues.
Thus, programmers with visual impairments had to either
convince their team to switch to more accessible alternatives
or work with the choices made by their colleagues. We
recommend that official documentation of the UI frameworks
and libraries should prioritize accessibility and mention screen
reader compatibility. The approach would also benefit sighted
programmers by making them aware of the accessibility issues
and fixes required for the UIs to work consistently with
different screen readers and platforms.

C. Limitations and Future Work

Despite our efforts to have a balanced gender representation,
our interview study’s sample was heavily skewed towards men.
We believe this was due to the software engineering field
and the online communities we recruited from being male-
dominated. In future work, we aim to understand the accessi-
bility challenges and experiences of gender-based minorities.

The programming experiences of our participants were
likely shaped by the workplace norms and laws specific to
their country and culture. While we highlight the access
issues resulting from government sanctions on our Iranian
participants, the interview study’s sample size did not permit
an analysis of differences due to participants’ resident country.

Our participants and mailing list members had a variety of
vision-related disabilities. Due to the small sample size and
since visual ability varies on a spectrum, we did not analyze

how the visual impairment’s nature and onset correlated with
our participants’ programming experiences. Our findings and
recommendations are intended for people designing program-
ming tools and visual languages for screen reader users. We
will interview developers who use screen magnifiers to expand
our results to other assistive technologies in future work.

The period of this research overlapped with the COVID-
19 pandemic. Only one interview participant (P16) shared
how the pandemic affected his remote work experience. While
none of the sampled threads mentioned the pandemic directly,
an analysis correlating with the pandemic dates could surface
accessibility challenges due to remote collaboration.

VI. CONCLUSION

We conducted mixed-methods qualitative research to under-
stand the experiences of programmers with visual impairments
with UI frameworks and libraries. We show that the promises
of cross-platform support and out-of-the-box accessibility are
only partially met for programmers with visual impairments.
Our findings highlight that accessibility barriers in UI frame-
works and libraries interrupt critical programming processes
and affect collaboration. We recommend prioritizing acces-
sibility in the official documentation of UI frameworks and
libraries. We also urge HCI researchers and practitioners to
consider supporting the information and help-seeking needs
of programmers with visual impairments.

REFERENCES

[1] J. Brains, “The state of developer ecosystem 2021,”
2021. [Online]. Available: https://www.jetbrains.com/lp/devecosystem-
2021/miscellaneous/

[2] H. Heitk¨ otter, S. Hanschke, and T. A. Majchrzak, “Evaluating cross-
platform development approaches for mobile applications,” in Inter-
national Conference on Web Information Systems and Technologies.
Springer, 2012, pp. 120–138.

[3] Google, Flutter, Google, Mountain View, CA, 2022. [Online]. Available:
https://flutter.dev/

[4] Meta, React Native, Meta, Palo Alto, CA, 2022. [Online]. Available:
https://reactnative.dev/

[5] The Apache Software Foundation, Cordova, Apache, 2022. [Online].
Available: https://cordova.apache.org/

[6] S. Overflow, “Stack overflow developer survey results 2019,” 2019.
[Online]. Available: https://insights.stackoverflow.com/survey/2019

[7] Stack Overflow, “Stack overflow developer survey 2021,” 2021.
[Online]. Available: https://insights.stackoverflow.com/survey/2021

[8] S. Overflow, “Stack overflow developer survey 2021,” 2021. [Online].
Available: https://insights.stackoverflow.com/survey/2021

[9] M. Pandey, V. Kameswaran, H. V. Rao, S. O’Modhrain, and S. Oney,
“Understanding accessibility and collaboration in programming for
people with visual impairments,” Proceedings of the ACM on Human-
Computer Interaction, vol. 5, no. CSCW1, pp. 1–30, 2021.

[10] S. Mealin and E. Murphy-Hill, “An exploratory study of blind software
developers,” in Proceedings of IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC, 2012, pp. 71–74. [Online].
Available: http://www4.ncsu.

[11] R. M. Siegfried, “Visual Programming and the Blind : The Challenge
and the Opportunity,” Science Education, pp. 275–278, 2006. [Online].
Available: http://www.adelphi.edu/ siegfrir/molly

[12] K. Albusays and S. Ludi, “Eliciting Programming Challenges Faced
by Developers with Visual Impairments: Exploratory Study,” 2016.
[Online]. Available: http://dx.doi.org/10.1145/2897586.2897616

[13] K. Albusays, S. Ludi, and M. Huenerfauth, “Interviews
and Observation of Blind Software Developers at Work to
Understand Code Navigation Challenges,” 2017. [Online]. Available:
https://doi.org/10.1145/3132525.3132550

[14] V. Potluri, P. Vaithilingam, S. Iyengar, Y. Vidya, M. Swaminathan, and
G. Srinivasa, “Codetalk: Improving programming environment accessi-
bility for visually impaired developers,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, 2018, pp. 1–11.

[15] E. Schanzer, S. Bahram, and S. Krishnamurthi, “Accessible
AST-Based Programming for Visually-Impaired Programmers,” in
Proceedings of the 50th ACM Technical Symposium on Computer
Science Education - SIGCSE ’19. New York, New York,
USA: ACM Press, 2019, pp. 773–779. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3287324.3287499

[16] V. Petrausch and C. Loitsch, “Accessibility Analysis of the Eclipse
IDE for Users with Visual Impairment,” 2017. [Online]. Available:
http://www.cooperate-project.de/images/publications/EclipseSurvey.pdf

[17] C. M. Baker, C. L. Bennett, and R. E. Ladner, “Educational
Experiences of Blind Programmers,” 2019. [Online]. Available:
https://doi.org/10.1145/3287324.3287410

[18] H. Sampath, A. Merrick, and A. Macvean, “Accessibility of command
line interfaces,” in Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, 2021, pp. 1–10.

[19] A. Armaly, P. Rodeghero, and C. McMillan, “Audiohighlight: Code
skimming for blind programmers,” Proceedings - 2018 IEEE Inter-
national Conference on Software Maintenance and Evolution, ICSME
2018, pp. 206–216, 2018.

[20] C. M. Baker, L. R. Milne, and R. E. Ladner, “Struc-
tJumper: A Tool to Help Blind Programmers Navigate and
Understand the Structure of Code,” 2015. [Online]. Available:
http://dx.doi.org/10.1145/2702123.2702589

[21] J. M. Francioni and A. C. Smith, “Computer science accessibility for
students with visual disabilities,” in Proceedings of the 33rd SIGCSE
technical symposium on Computer science education, 2002, pp. 91–95.

[22] J. Hutchinson and O. Metatla, “An Initial Investigation into Non-
visual Code Structure Overview Through Speech, Non-speech and
Spearcons,” in Extended Abstracts of the 2018 CHI Conference on
Human Factors in Computing Systems - CHI ’18. New York,
New York, USA: ACM Press, 2018, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3170427.3188696

[23] T. V. Raman, “Emacspeak—direct speech access,” ser. Assets ’96.
New York, NY, USA: Association for Computing Machinery, 1996, p.
32–36. [Online]. Available: https://doi.org/10.1145/228347.228354

[24] A. Stefik, A. Haywood, S. Mansoor, B. Dunda, and D. Garcia, “Sod-
beans,” in 2009 IEEE 17th International Conference on Program Com-
prehension. IEEE, 2009, pp. 293–294.

[25] A. Stefik and E. Gellenbeck, “Using spoken text to aid debugging:
An empirical study,” in 2009 IEEE 17th International Conference on
Program Comprehension. IEEE, 2009, pp. 110–119.

[26] E. W. Huff, K. Boateng, M. Moster, P. Rodeghero, and J. Brinkley,
“Examining the work experience of programmers with visual impair-
ments,” in 2020 ieee international conference on software maintenance
and evolution (icsme). IEEE, 2020, pp. 707–711.

[27] K. M. Storer, H. Sampath, and M. A. A. Merrick, “” it’s just everything
outside of the ide that’s the problem”: Information seeking by software
developers with visual impairments,” in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, 2021, pp. 1–12.

[28] F. Hansen, J. J. Krivan, and F. E. Sandnes, “Still not readable? an
interactive tool for recommending color pairs with sufficient contrast
based on existing visual designs,” in The 21st International ACM
SIGACCESS Conference on Computers and Accessibility, 2019, pp. 636–
638.

[29] Y. Zhuang, J. Baldwin, L. Antunna, Y. O. Yazir, S. Ganti, and Y. Coady,
“Tradeoffs in cross platform solutions for mobile assistive technology,”
in 2013 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM). IEEE, 2013, pp. 330–335.

[30] Microsoft, Xamarin, Microsoft, Redmond, WA, 2022. [Online].
Available: https://dotnet.microsoft.com/en-us/apps/xamarin/

[31] S. Mascetti, M. Ducci, N. Cant` u, P. Pecis, and D. Ahmetovic, “Devel-
oping accessible mobile applications with cross-platform development
frameworks,” in The 23rd International ACM SIGACCESS Conference
on Computers and Accessibility, 2021, pp. 1–5.

[32] M. Longley and Y. N. Elglaly, “Accessibility support in web frame-
works,” in The 23rd International ACM SIGACCESS Conference on
Computers and Accessibility, 2021, pp. 1–4.

[33] J. Li, S. Kim, J. A. Miele, M. Agrawala, and S. Follmer, “Editing spatial
layouts through tactile templates for people with visual impairments,”
in Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, 2019, pp. 1–11.

https://dotnet.microsoft.com/en-us/apps/xamarin
https://doi.org/10.1145/228347.228354
http://dl.acm.org/citation.cfm?doid=3170427.3188696
http://dx.doi.org/10.1145/2702123.2702589
https://doi.org/10.1145/3287324.3287410
http://www.cooperate-project.de/images/publications/EclipseSurvey.pdf
http://dl.acm.org/citation.cfm?doid=3287324.3287499
https://doi.org/10.1145/3132525.3132550
http://dx.doi.org/10.1145/2897586.2897616
http://www.adelphi.edu
http://www4.ncsu
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2019
https://cordova.apache.org
https://reactnative.dev
https://flutter.dev
https://www.jetbrains.com/lp/devecosystem

[34] C. Kearney-Volpe and A. Hurst, “Accessible web development: Opportu-
nities to improve the education and practice of web development with a
screen reader,” ACM Transactions on Accessible Computing (TACCESS),
vol. 14, no. 2, pp. 1–32, 2021.

[35] K. Norman, Y. Arber, and R. Kuber, “How accessible is the process of
web interface design?” in Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and Accessibility, 2013, pp. 1–2.

[36] C. Kearney-Volpe, C. Fleet, K. Ohshiro, V. A. Arias, and A. Hurst,
“Making the elusive more tangible: remote tools & techniques for
teaching web development to screen reader users,” in Proceedings of
the 18th International Web for All Conference, 2021, pp. 1–14.

[37] V. Potluri, T. E. Grindeland, J. E. Froehlich, and J. Mankoff, “Examining
visual semantic understanding in blind and low-vision technology users,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 2021, pp. 1–14.

[38] A. Borka, Developer Toolkit, 2019. [Online]. Available:
https://addons.nvda-project.org/addons/developerToolkit.en.html

[39] A. Shetty, E. Jarjue, and H. Peng, “Tangible web layout design for
blind and visually impaired people: An initial investigation,” in Adjunct
Publication of the 33rd Annual ACM Symposium on User Interface
Software and Technology, 2020, pp. 37–39.

[40] V. Potluri, L. He, C. Chen, J. E. Froehlich, and J. Mankoff, “A
multi-modal approach for blind and visually impaired developers to
edit webpage designs,” in The 21st International ACM SIGACCESS
Conference on Computers and Accessibility, 2019, pp. 612–614.

[41] V. Potluri, T. Grindeland, J. E. Froehlich, and J. Mankoff, “Ai-assisted ui
design for blind and low-vision creators,” in the ASSETS’19 Workshop:
AI Fairness for People with Disabilities, 2019.

[42] “program-l: V.i. programmers discussion list.” [Online]. Available:
https://www.freelists.org/archive/program-l/

[43] J. M. Morse, “The significance of saturation,” pp. 147–149, 1995.
[44] Freedom Scientific, JAWS for Windows, Vispero, 2022. [Online].

Available: https://www.freedomscientific.com/products/software/jaws/
[45] NV Access, Nonvisual Desktop Access, NV Access, 2022. [Online].

Available: https://www.nvaccess.org/
[46] Apple, Accessibility - Vision - Apple, NV Access, 2022. [Online].

Available: https://www.apple.com/accessibility/vision/
[47] J. Salda˜ na, The coding manual for qualitative researchers. Sage, 2015.
[48] O. J. Foundation, Dojo, Open JS Foundation, 2022. [Online]. Available:

https://dojo.io/
[49] B. C. Team, Bootstrap, 2022. [Online]. Available:

https://getbootstrap.com/
[50] Accessibility tree - MDN Web Docs Glossary: Definitions of Web-related

terms — MDN. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Glossary/Accessibility tree

[51] Aria - Accessibility: MDN. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA

[52] WebAccessibilizer, Bootstrap, 2022. [Online]. Available:
https://www.stsolution.org/WebAccessibilizer/

https://www.stsolution.org/WebAccessibilizer
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en
https://getbootstrap.com
https://dojo.io
https://www.apple.com/accessibility/vision
https://www.nvaccess.org
https://www.freedomscientific.com/products/software/jaws
https://www.freelists.org/archive/program-l
https://addons.nvda-project.org/addons/developerToolkit.en.html

