
Attention Patterns for Code Animations: Using Eye Trackers to
Evaluate Dynamic Code Presentation Techniques

Louis Spinelli∗
Information School

University of Washington
Seattle, WA, USA
spinelli@uw.edu

Maulishree Pandey∗
School of Information
University of Michigan
Ann Arbor, MI, USA

maupande@umich.edu

Steve Oney
School of Information
University of Michigan
Ann Arbor, MI, USA
soney@umich.edu

ABSTRACT
Programming instructors seek new ways to present code to novice
programmers. It is important to understand how these new pre-
sentation methods affect students. We prototyped three different
ways to animate the presentation of code. We used eye-tracking
technology to observe participants as they were presented with
animations and completed three activities: code summarization,
syntax error correction, and logic error correction. The prototypes,
our method for observation, and our analysis methods were each
informed by previous research. We observed variation in how par-
ticipants consumed animations. Our initial results indicate that
viewing animations of a single textual representation of source
code may affect the attentional processes of novice programmers
during subsequent tasks.
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1 INTRODUCTION
Since the 1940s, visual representations of program code have evolved
from static flow charts to dynamic animations[20]. A large body of
research is now focused on understanding program visualization in
introductory programming education[19]. The belief that students
∗The first and second authors contributed equally to this project

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3214338

experience difficulty learning because they lack a concrete mental
model has often been cited as a reason for developing program
visualizations[18]. Two additional reasons given in support of dy-
namic animations are the ease of describing program behavior and
removing the potential for an instructor to make mistakes when
presenting code[1].

Our study provides insights into the effects of animating the pre-
sentation of textual source code and directions for future research.
In this study, animating the presentation of textual source code (“a
single textual representation”) refers to animating the text of the
source code without the addition of separate graphical represen-
tations of elements contained within the code such as variables,
classes, and methods.

Animations of source code may have an effect on the partici-
pants’ reading approach and attentional processes. Element cover-
age, which is the fraction of words a participant fixates on when
reading, is one part of a novice programmer’s reading approach [8].
Previous work has found element coverage for expert programmers
is lower than novice programmers because expert programmers
are able to focus on the relevant words within the code [8]. For
novice programmers, watching an animation that illustrates the
non-linear nature of code may reduce element coverage during
later tasks. A participant’s ambient and focal vision correspond to
bottom-up and top-down attentional processes, respectively, and
are measured using the K-coefficent [14]. Ambient vision, indicated
by negative K-coefficient values, is beneficial for exploring code
whereas focal vision, indicated by positive K-coefficient values, is
beneficial for the inspection of elements within code [14].

In order to determine how code animations might affect these at-
tention patterns, we recorded and examined the eye-gaze of novice
programmers for three different animation interventions. We ob-
served that our participants consume animations differently, espe-
cially when they were given control of the animation speed. For
all animation interventions where text was legible, we observed
an increase in element coverage per minute for all participants as
they viewed the animation. However, this increase does not ap-
pear to carry over to programming activities after the animation
has finished. We observed a reduction in the element coverage
during debugging tasks for participants who watched non-linear
animations. Watching an animation also appears to have an effect
on participants’ K-Coefficient. We observed an increase in focal
attention during debugging and summary tasks and an increase in
ambient attention during logic tasks.
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2 NOVICE PROGRAMMERS AND THE
PRESENTATION OF SOURCE CODE

2.1 Background
A large body of research is focused on understanding program
visualization in introductory programming education [16, 19]. An-
other body of literature combines eye-tracking and programming
education research [2, 3, 7, 22]. Existing eye tracking studies have
explored how novice programmers interact with single textual
representations of static source code [8, 10, 12, 23], multiple rep-
resentations of code, [5, 6], and the effect of animation speed on
comprehension [13].

Previous research has focused on helping novice programmers
understand run-time dynamics of computer programs through
visualizations[19]. Researchers [9, 17] have investigated program
visualizations with a focus on code reading and code writing, and
found it to be beneficial for students. For example, modeling the
eye gaze of experts for novice programmers has shown promise
in debugging tasks [21]. Live programming — where a program
is designed and implemented in front of a class — has also been
investigated as a pedagogical tool beneficial to code writing [15, 17].
There appears to be an absence of research on animating the presen-
tation of a single textual representation of source code and how it
may affect comprehension and carrying out of related tasks among
novice programmers.

2.2 Methodology
2.2.1 Procedure. We tested 3 animation interventions with 16

novice programmers. Participants’ eye-gaze data, as they interacted
with the animations, was recorded using Gazepoint GP3 eye-tracker.
The research team recruited participants from introductory pro-
gramming courses as well as from participants of a summer research
program for Masters students. After selection, some participants
completed a survey that collected information about years of pro-
gramming experience, currently enrolled programming courses,
completed programming courses, and specifics for each program-
ming language they have used. For other participants this informa-
tion was collected verbally. All but three participants had less than
four years of experience, and these three participants only piloted
our first intervention (described below). Participants included stu-
dents who had previously taken programming courses and students
who were self-taught in programming.

A web-based programming environment was designed by the
research team to display the animations. The user interface (UI)
of the environment enabled participants to view the program and
associated tasks, run the program, and debug by viewing error
messages in the same screen. The programming tasks we tested
included code summarization [8], syntax error correction, and logic
error correction. Code summarization consisted of asking partici-
pants to summarize the code after watching an animation. Syntax
and logic error correction are comparable to debugging tasks com-
pleted in other studies [12]. Syntax errors consisted of code errors
that prevented source code execution such as a misspelled vari-
able. Logic errors consisted of errors that caused code execution to
produce inaccurate results such as an algorithm meant to sort in
ascending order sorting in descending order. Participants were able

Figure 1: The interface of the live writing intervention as
the animation reveals code in linear order. Participants were
asked not to begin writing their summaries until after each
animation completed playing.

Figure 2: The live writing intervention after an animation
completed. The presented code remained visible and ed-
itable during the summarization task.

to view, interact, and run a static representation of the code while
completing all three tasks.

2.2.2 Line Highlighting Intervention. Based on the theoretical
underpinning that making execution order explicit may be helpful
to novice programmers [19], source code was presented with a
white background and lines were highlighted in yellow in the order
they would execute during run-time. In our initial iteration, lines
were only highlighted during execution and then the background
returned to white after execution. For our final iteration they stayed
highlighted until the animation was completed and lines that exe-
cuted multiple times, such as those within loops, became darker as
the animation progressed. Six participants tested three variations
of this intervention — variations included highlighting lines with
code visible, blurry, and non visible.

2.2.3 Eye-Gaze Intervention. Source code was presented with
a white background and a yellow dot. The interface was similar
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Table 1: The operationalization of concepts for this study.

Concept Definition Operationalization (Metrics)
Novice Programmer A programming student who has little to no

previous experience [8].
Previous Coursework, Years of Experience, Self Reported Level
of Knowledge [8]

Reading Approach The approach/pattern taken when reading
text [8].

Reading Patterns (Top-to-Bottom, Left-to-Right), Element Cov-
erage [8]

Attentional Process The processes of exploration and inspection
which guide attention [14].

Ambient and Focal Attention measured with the K-Coefficient
[14]

Figure 3: After completing and submitting their summaries,
participants could view their next tasks, edit code, and exe-
cute the program.

Figure 4: Participants could view execution errors in the in-
tervention interface while completing each task.

to Stein and Brennan’s, which showed novice programmers the
previously-recorded eye gaze of expert programmers represented as
a yellow dot [21]. Similar to the line-highlighting intervention, this
animation played in the order of program execution. Participants
were instructed to follow a yellow dot overlaid onto the code editor.
We tested the intervention with code visible, blurry, and non visible.
We tested this intervention with 3 participants who also tested the
line-highlighting intervention.

2.2.4 Live Writing Intervention. Participants were initially pre-
sented a blank integrated development environment (IDE) on the
left and an area to enter a summary on the right. A Live Writing
animation would then run where source code became visible similar

to if it was being typed by the participant (Figures 1 and 2). Live
Writing is a technology that records the typing of code allowing it
to be viewed remotely and asynchronously[11]. After the anima-
tion played, the interface became a working IDE where participants
could execute code, view errors, and complete tasks (Figures 3 and
4).

Three similar code blocks were created. The lengths of the blocks
ranged from 23 to 27 lines. Each code block included a for-loop, a
class, and amethod. A fourth blockwas created and used for awarm-
up task for all participants. This ensured participants were familiar
with the interface controls, the tasks, and the code elements they
would encounter. The code blocks were designed so all expressions
and statements would execute when run (without errors).

After the warm-up, participants were presented each code block
with one of three treatments: static code (included as a control),
an animation of code being typed in the order it would execute, or
an animation of code being typed in linear order (lines typed from
top-to-bottom). The order and combination of each code block and
treatment was randomized across participants. Ten participants
completed pilots of the Live Writing Intervention.

2.2.5 Research Questions. The research questions we focus on
in this paper are:

(1) The effect of the animated presentation of source code on
a novice programmer’s reading approach and attentional
processes.

(2) Comparison of the effects of different interventions on read-
ing approach and attentional processes.

2.3 Results
2.3.1 Element Coverage. Element coverage is defined as the

fraction of words fixated on. [8]. We used this metric to explore
differences in how participants interacted with the source code
between tasks and during the intervention. We found a notable
difference when comparing measures taken during the consump-
tion of the intervention and measures taken during the later tasks.
Element coverage per minute was much higher when participants
were consuming an animation than during a task. This is likely
because all participants at least partially track code as it is typed.

Interestingly, we did not observe any clear effects when compar-
ing element coverage measures across interventions. This could be
due to individual differences among participants, and also partly
due to the small sample size. The only observed difference was
between the participant group who completed the debugging task
after viewing the non-linear Live Writing Intervention and the
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groups who either were presented with static code or received the
linear treatment.

For all three interventions, we examined the reading approach
of our participants. We operationalized reading approach using the
same measures defined by Busjahn et al [8]. This included element
coverage, vertical next text (saccades that stay on same line or move
one line below), vertical later text (saccades that stay on same line
or move to any line below), horizontal later text (saccades that move
right on same line), regression rate (saccades that move to previous
lines), and line regression rate (saccades that move left on the same
line) [8]. These indicators for reading approach were in line with
logical explanations for animations (i.e. increased top-to-bottom
line reading when viewing a linear animation of line typing).

2.3.2 Consuming Animations. For the LiveWriting Intervention,
participants were able to control the speed of the animation. Four
participants viewed the animation at the speed we set (or slightly
faster), and two viewed it at a much faster speed - this was expected
behavior. We observed that two of the participants who played
the animation quickly tracked the code as it was typed (Figure 5,
left). When examining the eye tracking data we found that three of
the participants who consumed the animation at a slower rate of
speed were not just tracking the code as it was typed, but exploring
all code visible at a given time (Figure 5, right). Concerning all
three interventions, three participants stated they would likely skip
viewing an animation if possible.

2.3.3 Attentional Processes after Consuming Animations. After
observing participant behavior during the first two animation inter-
ventions, we included an analysis of the participants’ attention pro-
cesses with the LiveWriting Intervention. Twomodes of attentional
processes — ambient and focal attention, which correspond to explo-
ration and inspection behaviors respectively—operationalized by
the K-coefficient—were analyzed (included in Table 1) [14]. The K-
coefficient is calculated by taking the difference between zero-score
values of the fixation durations and saccadic amplitudes. Positive
values of the K-coefficient indicate focal viewing, while negative
values indicate ambient viewing. The Live Writing treatment ap-
pears to increase ambient attentional processes when correcting
logic errors, and increases focal attentional processes for activi-
ties like code summarization and syntax correction. This seems to
suggest that novice programmers tend to scan the code for logic
errors, but read the code more strategically for syntax errors and
code summarization.

2.4 Discussion
2.4.1 Design of Animations. The eye-tracking data revealed that

participants interacted with the animations differently. Our first
two interventions - the line highlighting and eye-gaze animations
- did not allow participants to control the speed of the animation.
We received feedback from two participants that the animation
was helpful and was played at a speed they felt was appropriate.
Two participants felt the animation played too slowly. When we
enabled participants to control the speed of animations we observed
participants adjusting the speed up and down during the warm up
task until settling on a speed. Participants preferred this control
possibly increasing participant satisfaction with the animations.

Figure 5: Fixations of Participant 11 and 14. Participant 11
(left) tracked the animation at a high speed closely following
the code as it became visible. Participant 14 (right) played
the animation slowly, reading other parts of the computer
code.

Figure 6: LiveWriting appears to increase ambient attention
when correcting logic errors while increasing focal atten-
tion with code summarization and correcting syntax errors.

Previous research has found that presentation speed can affect what
concepts learners take away from an animation [13]. Although it
is unclear if this would lead to better learning outcomes in this
case, it is possible this control allowed participants who would have
lost interest when the animation was playing slowly to maintain
interest while still consuming the whole code block.

2.4.2 Effect on Reading Approach and Attentional Processes. El-
ement coverage per minute was notably lower when debugging
after viewing the non-linear Live Writing Intervention than the
linear animation and with no intervention. It is possible this was
because participants understood the code executed in a non-linear
manner and participants read the code more efficiently. However, if
this was the case, differences in vertical next text and vertical later
text, which are indicative of the linearity of reading, would also
be lower. This finding is important and should be further studied.
If no differences exist between the effects of linear and non-linear
animations, the total effect is from the animations alone.
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We observed an increase in focal attention during debugging and
summary tasks and an increase in ambient attention during logic
tasks. The eye-tracking data revealed participants were reading the
code during the code summary task, and inspecting the code for
bugs during the debugging task, potentially leading to the increase
in focal attention. The increase in ambient attention (which is also
a decrease in focal attention) during the logic tasks aligns with
participant behavior when they were lost and did not know where
to look. It is yet to be seen what types of attentional processes
will be most beneficial for novice programmers for various tasks
making future work in this area all the more important.

3 FUTUREWORK
3.1 Limitations
It is possible that based on our small sample we observed anomalous
behaviors that are not representative of novice programmers. It
is also possible we missed observed outcomes that did not have
a large effect size. The findings reported here should be viewed
as preliminary and informative for future research rather than
empirical and conclusive.

When completing our third invention, three participants piloted
the interface with different code blocks and are excluded from
these results. We experienced data collection issues with three
other participants while using the eye tracker and their data was
removed from the results.

3.2 Additional Metrics To Consider For Future
Work

Additional qualitative and quantitative metrics exist that can sup-
port and enrich the findings in future studies. Two additional quan-
titative measures, story order and execution order, would provide
insight into participant reading strategies at a global level [8]. As
described by Busjahn et al., story order measures if code is read
in linear order (like a book) whereas execution order measures if
code is read in the order the lines of code would execute when run.
Experts have been observed reading less linearly than novices [8].
In this study, we suspect that some participants were more likely
to begin reading code in execution order after watching anima-
tions but would quickly fall back on reading in a more linear order.
Previous research has found that “when the visual strategies of
low-comprehenders were similar to those of high-comprehenders,
the comprehension outcome of the low-comprehenders was poor”
[4].

Qualitative data was collected through observations, the code
summaries prepared by participants, and follow-up interviews.
Analysis of this qualitative data would provide insight into partici-
pant mental models and overall comprehension. Similar to method-
ology laid out by Bendarik et al., a combined analysis of quantitative
metrics and qualitative findings will provide insight into learning
outcomes [4].

3.3 Future Work
The preliminary findings of this pilot study were in line with pre-
vious studies. The values of metrics measuring reading approach
[8] and attentional processes [14] fell within the same ranges as

previous studies adding face validity to our results. For example, our
K-coefficient ranges were similar to the K-coefficient ranges Orlov
observed for programmers that were coding in the programming
language being studied less than one hour a week [14].

While we identified a possible effect on participants’ attentional
processes and element coverage when presenting live-written code,
this finding should be further examined. A full scale study should
examine the effects of each type of intervention explored in this
study with a meta-analysis comparing the results of the three stud-
ies. This meta-analysis should focus on whether observed effects
are the result of a specific intervention or from animations in gen-
eral. Each study should focus on determining the role order-of-line
animation plays in interventions.
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